
Article citation info:  

Astolfi D, Castellani F, Natili F. Wind turbine generator slip ring damage detection through temperature data analysis. Diagnostyka. 

2019;20(3):3-9. https://doi.org/10.29354/diag/109968  

3 

 

  

DIAGNOSTYKA, 2019, Vol. 20, No. 3 
ISSN: 1641-6414 

e-ISSN: 2449-5220 
DOI: 10.29354/diag/109968 

 

WIND TURBINE GENERATOR SLIP RING DAMAGE DETECTION  

THROUGH TEMPERATURE DATA ANALYSIS 
 

Davide ASTOLFI, Francesco CASTELLANI, Francesco NATILI 

University of Perugia, Department of Engineering, Via Duranti, 06125, Perugia, Italy,  

davide.astolfi@unipg.it, francesco.castellani@unipg.it, francesco.natili@yahoo.it   
 

Abstract  

The use of condition monitoring techniques in wind energy has been recently growing and the average 

unavailability time of an operating wind turbine in an industrial wind farm is estimated to be less than the 3%. 

The most powerful approach for gearbox condition monitoring is vibration analysis, but it should be noticed 

as well that the collected data are complex to analyse and interpret and that the measurement equipment is 

costly. For these reasons, several wind turbine subcomponents are monitored through temperature sensors. It 

is therefore valuable developing analysis techniques for this kind of data, with the aim of detecting incoming 

faults as early as possible. On these grounds, the present work is devoted to a test case study of wind turbine 

generator slip ring damage detection. A principal component regression is adopted, targeting the temperature 

collected at the slip ring. Using also the data collected at the nearby wind turbines in the farm, it is possible to 

identify the incoming fault approximately one day before it occurs. 

 

Keywords: wind energy, wind turbines, fault diagnosis, condition monitoring, principal component regression 

 
1. INTRODUCTION  

 

In the latest years, wind turbines technology has 

been characterized by a considerable efficiency 

improvement: a turning point has been the 

optimization of the control system. It is remarkable 

that this can be conceived at the level of single 

wind turbine (through yaw [1] or pitch [2, 3] or cut-

out [4, 5] optimization) or at the wind farm level 

(through cooperative control [6, 7] or wind turbine 

wakes steering [8]).  

Another fundamental direction for wind turbine 

production improvement is diminishing the 

unavailability time. According to a recent estimate 

[9], a wind turbine operating in an industrial wind 

farm has unavailability time less than 3% and 

therefore, in perspective, target 100% availability is 

becoming more and more realistic. 

Optimizing wind turbine availability means 

preventing faults sufficiently early to avoid 

production losses. For this reason, wind turbine 

condition monitoring systems, based on vibration 

measurement at meaningful parts of the gearbox, 

are becoming more and more widespread. The 

target of this kind of equipment is typically the 

gearbox [10, 11] because repairing gearboxes is 

particularly costly. 

Nevertheless, there are several other wind 

turbine subcomponents that are worth being 

monitored [12]: for example, yaw and pitch motors, 

generator bearings and slip rings, and so on. 

This kind of subcomponents is typically 

monitored through temperature sensors [13-16], 

because they are cheaper with respect to 

accelerometers and because the data are relatively 

easier to interpret with respect to vibration data. It 

should be noticed that the analysis of operation 

data, collected through Supervisory Control And 

Data Acquisition (SCADA) systems, is not as 

powerful as vibration analysis, as regards the 

diagnosis time. Exactly for this reason, it is 

particularly important to empower the SCADA-

based condition monitoring [17-20] through 

advanced analysis techniques [21-25].  

On these grounds, the present work is devoted 

to a test case discussion: the selected test case is a 

fault at the generator slip ring of a 2 MW wind 

turbine from a wind farm sited in Italy, featuring in 

total nine 2 MW aerogenerators. In general, 

damages occurring at wind turbine generators are 

particularly elusive to diagnose [26-28] and most 

likely it happens that the fault is identified too late 

for timely intervention. For this reason, particular 

attention has been devoted to the formulation of an 

appropriate method for the fault diagnosis. The idea 

is modelling the temperature collected at the slip 

ring temperature as a linear function of operating 

parameters of the wind turbine and, more 

importantly, of the other available internal 

temperature measurements. The selected model is 

principal component regression and the objective is 

identifying the occurring fault by detecting peculiar 

characteristics of the residuals between slip ring 

temperature measurements and model estimates. 

The main result of this study is that it is possible 

diagnosing the generator slip ring fault for the test 

case of interest approximately one day before it 

occurs: on the grounds of the above discussion 
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about the features of generator faults, this diagnosis 

time is remarkable. 

The structure of the manuscript is as follows: in 

Section 1, the wind farm and the data set are 

described. In Section 2, the method is presented. 

The results are collected and discussed in Section 3 

and, finally, conclusions are drawn and further 

directions of this work are indicated in Section 4.      

  

2. THE WIND FARM AND THE DATA SET 

 

The test case of the present work is a wind farm 

sited in southern Italy, whose layout is sketched in 

Figure 1. The main features of the wind turbines are 

presented in Table 1. WTG09 is indicated in red 

because it is the wind turbine that has undergone a 

generator slip ring damage.  

 
Table 1: Main turbine characteristics 

Number of turbines 9 

Rotor diameter 100 meters 

Hub height 95 meters 

Rated power 2 MW 

Terrain Flat 

 
Fig. 1. The layout of the wind farm 

 

The measurements at disposal for the study are: 

 nacelle wind speed and direction; 

 power production; 

 ambient temperature; 

 yaw error; 

 rotor revolutions per minute; 

 generator revolutions per minute; 

 reference blade pitch angle; 

 generator bearing temperature; 

 gear oil temperature; 

 gearbox main bearing temperatures (collected 

at three different points); 

 generator slip ring temperature. 

The data set at disposal goes from 01st 

September 2018 to 11th January 2019 (the day of 

fault occurrence at WTG09). The data have been 

filtered on the request that each wind turbine in the 

farm was productive: the appropriate run time 

counter, available in the SCADA data set, has been 

used for this purpose. Upon filtering, the data sets 

results being composed of 16826 data for each of 

the measurement channels. 

 

3. THE METHOD 

 

The idea of the present work is detecting the 

generator slip ring fault occurrence through 

temperature data analysis.  

In Figure 2, a time series plot for WTG09 is 

reported: in y-axis, there is the generator slip ring 

temperature (relative to the ambient temperature), 

and in x-axis there is the time. The latest days 

before the fault occurrence are included in the plot. 

From Figure 2, it qualitatively arises that maximum 

observed temperature increases approaching the 

fault occurrence.  

 
Fig. 2. Generator slip ring temperature time series: 

WTG09, one week before fault occurrence  

 

On these grounds, the objective of the present 

work is formulating a reliable model for the 

generator slip ring temperature as a function 

possibly of the ambient conditions, operation 

parameters of the wind turbine and thermal 

conditions at wind turbine subcomponents. Once 

the model is trained with data describing the normal 

functioning of the wind turbine and of the 

subcomponent of interest (the slip ring generator, in 

this case), hopefully the fault occurrence can be 

detected in the validation data set as anomalous 

features of the residuals between model estimates 

and measurements. It should be noticed that this 

approach is general and doesn’t depend on the 

subcomponent of interest for the particular test case 

study. 

The target of the model has therefore been 

selected as the generator slip ring temperature 

(relative to the ambient temperature) and the 

possible input variables for the model are all the 

other measurements listed in Section 1. As 

discussed for example in [30-32], a linear model is 

commonly adequate for this kind of tasks. A subtle 

point regards the fact that there likely is a 

remarkable collinearity between the possible input 

variables of the model (for example, wind speed 

and power production) and this can affect the 

quality of the model.  For this reason, the principal 

component regression has been selected for this 
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study. Sideways, it should be noticed that the use 

principal component analysis has been recently 

spreading for wind energy applications [33-35] and 

engineering applications in general [36-38].  

The method goes as follows. Let yn,1 be the 

vector of measured output (namely, the slip ring 

temperature relative to the ambient temperature) 

and Xn,o be the matrix of p covariatives. The 

standard least squares regression poses that  

 𝑦 = 𝑋𝛽 + 𝜀  (1) 

where 𝛽 is the vector of the regression coefficients 

that must be estimated from the data and 𝜀 is a 

vector of random errors. The ordinary least squares 

estimate of 𝛽 is 

 βols = (XTX)−1XTY   (2) 
The principal component estimate of 𝛽 is 

obtained from the singular value decomposition of 

𝑋. Let 

 X = UΔVT    (3) 

where the columns of 𝑈 and 𝑉 are orthonormal sets 

of vectors denoting respectively the left and right 

singular vectors of 𝑋 and  Δ is a diagonal matrix. 

This allows decomposing 𝑋𝑋𝑇 as 

 XXT = VΛVT   (4) 

where Λ = 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑝)   and 𝜆1 ≥ ⋯ ≥ 𝜆𝑝 ≥

0. 𝑋𝑉𝑖 is the i-th principal component and 𝑉𝑖 is the 

i-th loading corresponding to the i-th principal 

value 𝜆𝑖 . Therefore, the transformed matrix 

𝑊 = 𝑋𝑉 can be viewed as a new covariatives 

matrix and the principal component regression is 

basically an ordinary least squares regression 

between y and 𝑊. 

The principal component regression can be 

superior with respect to ordinary least squares when 

the covariatives are severely collinear and this can 

be seen from Equation (4). Namely, the 𝑊 matrix 

can be truncated up to a desired number of principal 

components. This procedure means neglecting the 

smallest eigenvalues in the decomposition (4) and 

this exactly means addressing collinearity, because, 

when two covariatives are highly collinear, 𝑋 tends 

losing its full rank and  𝑋𝑋𝑇 has eigenvalues 

tending to 0. 

Finally, the principal component estimate of 𝛽 

is given by 

 βpcr = V(WTW)−1WTY   (5) 

The idea is employing the data of a wind turbine 

having normal functioning for constructing the 

baseline model (namely, computing 𝛽𝑝𝑐𝑟). 

Subsequently, the model will be employed on two 

test data sets: one from a healthy wind turbine and 

one from WTG09. The slip ring temperature on the 

test data sets will be simulated through the 

following formula: 

 Ytest = Xtest βpcr    (6) 

and the target to analyze will be the difference in 

the behavior of the residuals between model 

estimates and measurements. In the present work, 

results are reported for the particular selection of 

WTG04 as training wind turbine and of WTGs 06 

and 09 as test wind turbines. It should be noticed 

that results are reported for this particular selection 

of training and test wind turbines only for brevity. 

In practice, each possible selection of healthy 

couples of wind turbines has been tested for 

training and validating the model and it has been 

observed that the results do not depend on the 

particular couple selected. Therefore, it has been 

observed that the results are as general as possible, 

compatibly with the type and kind of data sets at 

disposal.  

The training healthy wind turbine (WTG04, in this 

case) data set is employed for estimating an 

adequate number of principal components for the 

model. Recall that the total number of covariatives 

at disposal for modelling the output is 13 (Section 

1). K-fold cross validation [39] of the model, for 

different numbers of principal components, is 

performed. The procedure goes as follows: (K-1)/K 

of the test healthy wind turbine (WTG06) data are 

used for training and the remaining 1/K are used for 

testing. As a rule of thumb, K is commonly selected 

to be 10 and this value is adopted in this study. The 

(K-1)/K fraction of the data is used for estimating 𝛽 

through Equation 5 and the 1/K fraction is used for 

testing through Equation 6. For each fold selection, 

the Root Mean Square Error (RMSE) is selected as 

metric for quantifying the goodness of the 

regression: 

 RMSE =
1

nvalid
√∑ (yî − yi)

2nvalid
i=1

   (7) 

where 𝑦�̂� is the model estimate and 𝑦𝑖 is the 

measurement of the slip ring temperature. The 

RMSE values are subsequently averaged on the 

folds selection and therefore, for a given number of 

principal components included in the model, one 

has a unique metric for quantifying the goodness of 

the regression. The results are reported in Figure 3 

and it arises that 10 principal components are 

needed for obtaining a RMSE of the order of 2 

degrees. 

 

4. THE RESULTS 

 

In Figure 4 a time series plot is reported. The 

absolute difference between the slip ring 

temperature measurements  and the model 

estimates  is reported for the two test wind 

turbines (the healthy reference one WTG06 and the 

faulty one WTG09). The data set covers the week 

before the fault occurrence and the consequent 

WTG09 shutdown. From Figure 4, it arises that the 

fault occurrence becomes clearly visible 16 hours 

before WTG09 shuts down: the absolute difference 

between measurements and model estimates 

doubles with respect to the order of magnitude of 

its peak when the wind turbine is in normal 

functioning. It should be noticed that this analysis 
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has been done for all the length of the data set at 

disposal and the conclusions from Figure 4 are 

confirmed. Figure 4 displays one week (the nearest 

to the fault occurrence) of residuals only for plot 

readability. A quantitative criterion for diagnostic 

threshold selection has been formulated as well. 

The mean and the standard deviation of the absolute 

residuals for the healthy test wind turbine (WTG06, 

in this case) are computed. It can be assumed that 

these residuals have a Gaussian distribution with a 

fair approximation and, therefore, a deviation with 

respect to the average larger that 3 standard 

deviations corresponds to a 99.7% probability rule. 

This diagnostic threshold is reported in Figure 4 as 

a black dashed line and it arises that, with this rule, 

the damage is detected with 99.7% probability 16 

hours in advance.   

 
Fig. 3. Results of the K-fold cross validation. Average 

RMSE as a function of the number of principal 

components  

 
Fig. 4. Time series of absolute difference between 

generator slip ring temperature measurements and model 

estimate. Faulty wind turbine (WTG09) and healthy wind 

turbine (WTG06) 

 

In order to have further quantitative indications, 

the time series in Figure 4 has been split in two. It 

is composed of 957 data and the part P1 is selected 

to include the first 863 data (up to the abnormal 

increase of the absolute residual for WTG09), the 

part P2 includes the data from 863 to 957. The 

statistics for the model testing for parts P1 and P2 

are reported in Tables 2 and 3. The mean error 

(ME) and the mean absolute error (MAE) are 

reported. The units are Kelvin degrees. 

 
Table 2: Model testing, WTG06 

Data part ME MAE 

P1 -2.13 2.51 

P2 -0.53 2.00 

 
Table 3: Model testing, WTG09 

Data part ME MAE 

P1 0.85 2.22 

P2 6.49 6.92 

 

From Tables 2 and 3, it arises that the fault 

occurrence can be individuated from the remarkable 

increase of the MAE in period P2 for the faulty 

wind turbine WTG09: it becomes of the order of 

3.5 times the value for the healthy wind turbine in 

the same period P2 and 3.5 times the values for the 

faulty wind turbine in period P1. During period P2, 

there is a very remarkable increase also of the ME: 

it is of the order of 7 times of the value recorded 

during period P1 for the faulty wind turbine. 

The comparison of MEs during P1 for the 

healthy and the faulty wind turbines indicates that 

symptoms of a longer-scale evolution of the 

occurring fault could actually be retrieved. In fact, 

the same kind of results has been obtained by 

testing the model on all the data set at disposal 

(from 1st September 2018 to 11th January 2019): 

they are not displayed here for brevity. The 

statistical significance of the long-term evolution 

analysis of the fault should be addressed in depth 

[40] and is the object of a further study. From the 

discussion of the present work, it arises that the 

fault occurrence can be detected clearly one day 

before. Since the test case deals with a wind turbine 

subcomponent that is characterized in general by a 

quick evolution of the damages, the results of this 

work are promising and indicate perspectives of 

future studies about the subject.  

 

5. CONCLUSIONS AND FURTHER 

DIRECTIONS 

 

In the present work, wind turbine fault diagnosis 

through internal temperature data analysis has been 

addressed. This topic has been the investigation 

object of several studies, because the analysis of 

operation data of wind turbines can in general 

provide meaningful indication about occurring 

faults. Previous work from the authors has actually 

been devoted to the subject [13, 14] and was mainly 

focused on the analysis of wind turbine gearbox 

temperatures: in that case, the evolution of the fault 

is in general quite slow (of the order of some 

months) and therefore operation data analysis could 

represent a valuable alternative to more powerful 

and costly condition monitoring techniques (like 

accelerometers placed at meaningful parts of the 

gearbox). 
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Nevertheless, there are several wind turbine 

subcomponents (yaw motor, generator bearings and 

slip ring, and so on) whose monitoring is generally 

accomplished through temperature sensors. It is 

therefore important to develop operation and 

temperature data analysis techniques that could 

allow timely fault diagnosis at this kind of 

subcomponents. 

On these grounds, in this work a test case of 

wind turbine generator slip ring fault diagnosis is 

discussed. The general idea has been modelling the 

generator slip ring temperature for a healthy wind 

turbine (from the same wind farm as the faulty one) 

as a linear function of operation parameters and 

other internal temperatures (like gearbox 

temperatures, for example). Since there likely is a 

remarkable collinearity between some operation 

variables of wind turbines (as, for example, power – 

rotor revolutions per minute), the decision has been 

adopting a principal component regression.  

The baseline model has been constructed using 

the data of a healthy wind turbine and has been 

tested on two data sets: one from a healthy wind 

turbine and one from the faulty wind turbine. It has 

been observed that the results do not depend on the 

particular selection of the healthy test and 

validation wind turbines and therefore the results 

can be considered general. 

The main result of this study is that it has been 

possible to identify with clarity the fault occurrence 

approximately one day before the wind turbine 

shutdown.  

Several are the possible further directions of the 

present work. The most straightforward 

development is employing, as is currently being 

done, the methods and the models of the present 

work for real-time monitoring of the wind turbines 

of interest. An important development regards the 

generalization to other kinds of wind turbines (same 

technology, different manufacturers), but it should 

be said that the method is expected to work 

straightforwardly in the same way. 

Another development of this study is including 

further test cases in the analysis, as for example 

yaw motor faults, because this kind of damages 

represents a non-negligible fraction of the 

unavailability time of wind farms sited in harsh 

environment, where the flow conditions can be 

particularly complex [41].  

In general, the results of this study should 

stimulate wind energy practitioners and scholars in 

adopting complex operation data analysis 

techniques for condition and performance 

monitoring. 
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